三效催化转化器高效长寿低排放优化设计理论及方法研究

日期:2009-07-17     浏览:3    下载:0     体积:2M     评论:0    


您还没有登录,请登录后查看详情


针对三效催化转化器转化效率低、起燃温度较高、工作寿命较短以及工作过程排放控制效率较低等现实存在的问题,将机理建模、数值模拟、多学科设计优化以及人工智能等理论应用于三效催化转化器的研发以及工作环境优化匹配过程中,以期探索一种更为有效、合理的高效长寿低排放三效催化转化器优化设计理论及方法,使三效催化转化器转化效率高、起燃温度较低、工作寿命较长以及工作过程排放控制效率高等性能,这对于提高汽车三效催化转化器的排放控制水平,探索新的三效催化转化器研发方法和技术都具有重要的理论意义和现实意义。 本文以湖南大学“985”二期——汽车先进设计制造技术科技创新平台(动力排放与电控子项目)(教重函[2004]1号)及湖南省科技攻关重点项目“车用三效催化转化器理论方法、关键技术及应用”(湘科计[2002]87号)为依托,以成功研发转化效率高、起燃温度较低、工作寿命较长以及工作过程排放控制效率高的三效催化转化器为目的,采取理论分析与实验研究相结合的方法,创新研究一种高效长寿低排放三效催化转化器优化设计理论及方法,论文的主要工作及创新点如下: (1)建立了包括流动与传热、化学反应等子模型在内的多形状三效催化转化器性能数学模型,提出了用于流动与传热守恒方程组计算的控制容积逐面叠加法以及湍流流动压力场数值解法,以椭圆截面为代表的非圆柱形载体进行数值模拟,并分析了椭圆率、载体长度与载体截面积耦合、载体孔密度与孔壁厚耦合对三效催化转化器性能的影响,为多形状三效催化转化器性能研究提供了坚实的理论基础。 (2)基于汽车三效催化转化器中气相和固相(载体表面)的质量平衡和能量平衡原理,建立了包括多基元催化反应机理、催化剂表面覆盖度变化、Ce储放氧的化学反应等子模型的多基元反应的三效催化转化器转化特性数学模型,模拟结果表明,转化效率模拟结果、气体组分分布与催化剂表面覆盖度变化模拟结果、三效催化转化器冷起动模拟结果以及助催化剂的储放氧能力模拟结果均与试验结果相吻合。 (3)从烧结速率以及反应速率建立了包含劣化过程的三效催化转化器的劣化特性模型,对三效催化转化器老化特性进行数值仿真,结果表明:在老化过程中,Pt颗粒平均直径迅速增大,而失活因子在老化后迅速减小,催化剂的活性下降最大。在三效催化转化器100000km老化后,HC、CO、NOx三种气体的转化效率都降低20%以上。为此,从催化剂及其分布等方面提出了三效催化转化器的抗劣化措施,为三效催化转化器结构优化和性能改进提供了一定的依据。 (4)首次提出了高效长寿三效催化转化器多学科优化设计方法,即以三效催化转化器转化效率、压力损失、质量以及抗热冲击性能为目标函数建立了多学科设计优化模型,系统研究基于多形状、多工况等几何、结构以及状态约束下高效长寿三效催化转化器的整体优化,采用高效长寿三效催化转化器多学科优化设计方法后,结果表明,三效催化转化器转化效率η提高了5.42%,压力损失Δp下降了6.99%,质量M减少了11.68%,位移变形Δε减少了20.91%,整体性能U提高了8.40%。这为高效长寿低污染三效催化转化器的优化设计提供了有力的理论指导。 (5)采用最小二乘法和最小二乘支持向量机建立汽油机空气质量流量测量动态模型,基于椭圆齿轮油耗测量传感器测量原理建立了汽油质量流量测量模型,应用小波分析提取或者去除信号中的白噪声,分别采用剔除跳变信号算法及递推平均滤波算法剔除测量信号所出现的跳动性和波动性,并对去噪声处理后数据的进行函数链神经网络拟合,有效地消除采集数据时各种干扰的存在。并针对三效催化转化器工作环境参数信号特点,设计了模糊神经网络控制器和采用串行编程与ODBC技术相结合成功地开发了三效催化转化器工作环境热工状况监测系统,为确保三效催化转化器工作环境优化匹配提供有力的技术支持。 汽油机三效催化转化器台架实验结果表明,本文研发的三效催化转化器的起燃温度大约在255℃左右。将三效催化转化器在国家汽车检测中心(襄樊)进行整车匹配后的排放检测实验,结果表明:本文研发的三效催化转化器对三种废气的转化效率均在92%以上,各项性能指标均满足欧Ⅳ排放标准限值。汽油机三效催化转化器与整车配套使用结果表明,本文研发的三效催化转化器与整车装车使用寿命长达120000km以上。

作 者:
刘孟祥 
学科专业:
车辆工程 
授予学位:
博士 
学位授予单位:
湖南大学 
导师姓名:
龚金科钟志华 
学位年度:
2008 
研究方向:
 
语 种:
chi 
基金项目:
 
打赏
更多>相关文献中心
0相关评论
本类推荐
下载排行
网站首页  |  关于我们  |  联系方式  |  使用协议  |  版权隐私  |  网站地图  |  排名推广  |  广告服务  |  积分换礼  |  网站留言  |  RSS订阅  |  违规举报
Powered By DESTOON