NH3的选择性催化还原技术(NH3-SCR)是目前最为有效的烟气脱硝手段,其在燃煤烟气和工业焦炉烟气脱硝中得到广泛的应用。催化剂性能尤其是使用温度窗口是NH3-SCR脱硝技术的核心因素。在非电领域,大量工业装置的烟气温度较低,不适用于传统的中高温SCR脱硝技术,因此急需开发应用适用于中低温区的SCR脱硝技术,尤其是具有低温脱硝活性的催化剂。近年来研究发现锰氧化物为活性组分的催化剂具有较好的低温脱硝SCR活性,从而受到较多的关注。近年来,本课题组所开发的锰基低温SCR催化剂已经在焦化烟气低温脱硝领域得到了工业化应用,但烟气中低浓度的SO2对其有严重的毒害作用,导致催化剂中毒失活,从而降低催化剂的使用寿命,增加脱硝成本。因此研究锰基SCR催化剂的SO2毒化机理和再生工艺对于提高催化剂的循环利用、降低脱硝成本、减少环境污染和资源浪费都具有重要的实际意义。
本文首先以课题组前期开发的凹凸棒石负载锰(Mnx/PG)催化剂为研究对象,评价了催化剂低温脱硝性能,考察了SO2对催化剂的毒化作用,并开展了中毒后催化剂的再生工艺研究。结果显示,所制备的Mn8/PG催化剂具有良好的低温脱硝性能,200℃时,NO转化率达到86%。在烟气中通入400ppm的SO2后,催化剂的脱硝活性急剧下降,直至完全中毒,200℃时标准活性评价条件下NO转化率稳定在24%;采用热再生和水洗再生对失活催化剂进行再生研究,发现热再生只能部分恢复催化剂的脱硝活性,而水洗再生后,催化剂的脱硝活性可以恢复到新鲜样水平。通过对新鲜、中毒和再生的Mn8/PG催化剂的表征分析可知,催化剂在受SO2毒化后生成的硫酸铵和硫酸氢铵沉积在催化剂表面上,堵塞催化剂孔道,导致催化剂失活。这些硫酸铵盐热稳定性较好,很难通过热处理的方式完全除去;但其易溶于水,水洗可以非常有效地将其除去,且水洗并不会洗去活性组分锰,因而催化剂脱硝活性得以完全恢复。
本文又以商用钒钨钛为基体,同样采用等体积浸渍法制备Mnx-V2O5-WO3/TiO2催化剂,考察了制备工艺参数(Mn负载量和煅烧温度)对催化剂脱硝性能的影响、SO2的毒化影响及失活催化剂的再生工艺。结果显示Mn的负载量为8%时,煅烧温度在500℃时,催化剂具有最佳的低温脱硝活性,200℃时,NO转化率接近100%。但当催化剂在含硫(400ppmSO2)气氛中完全中毒后,200℃时NO转化率降至35.6%。失活催化剂经过热再生后,其脱硝活性进一步降低,其中150℃时催化剂NO转化率由16.5%降至9.7%;而水洗再生后,催化剂脱硝活性都可以完全恢复。通过对新鲜、中毒和再生的Mn8-V2O5-WO3/TiO2催化剂的表征分析,发现催化剂在含硫气氛中的失活可能有两种原因造成。一方面由于硫酸铵盐沉积在催化剂的表面上,覆盖了催化剂的孔道结构,这也是所有SCR催化剂硫中毒的共性原因;另一方面活性组分锰与烟气中硫结合生成类似于硫酸锰盐的中间物质,其占据催化剂的活性中心,导致更为严重的毒化。而这两种失活路径均源自于SO2的催化氧化。热再生后催化剂表面上的硫酸铵盐可以通过热分解除去,但其分解产生的二氧化硫被催化剂中的钒进一步氧化,结合活性组分锰又会生成类似于硫酸锰盐的中间物质,因而脱硝活性反而降低。水洗再生不仅可以洗去催化剂表面上的硫酸铵盐,还可以破坏类似于硫酸锰中间物的结构,除去其中的硫酸根,并不会洗去活性组分锰,因而脱硝活性恢复至新鲜样。
本文通过对两种锰基催化剂硫中毒过程及再生工艺的研究,发现了所有SCR催化剂硫中毒的共性原因:沉积在催化剂表面上的硫酸铵盐覆盖了催化剂的孔道结构,同时也发现载体的不同也会导致催化剂硫中毒及再生过程中的不同表现:硫中毒后的Mnx/PG催化剂经过热再生后,其脱硝活性可以部分恢复;而硫中毒后的Mnx-V2O5-WO3/TiO2催化剂经过热再生后,其脱硝活性进一步降低。揭示了两种锰基催化剂硫中毒过程和再生工艺的规律。
- 作 者:
- 蔡程
- 学科专业:
- 化学工程
- 授予学位:
- 硕士
- 学位授予单位:
- 合肥工业大学
- 导师姓名:
- 张先龙
- 学位年度:
- 2018
- 研究方向:
- 语 种:
- chi
- 基金项目: