加热炉是钢铁企业用于钢坯轧制前加热的重要设备,同时也是最主要的能耗设备。加热炉燃烧控制系统复杂,且炉温对象具有大滞后、大惯性等特点,因此,研究加热炉炉温先进控制策略对于提高加热炉的控制品质,以及钢铁企业的节能降耗具有重要的意义。
本文以江苏省扬州市某蓄热步进梁式加热炉为研究对象,在生产现场已有控制系统硬件的基础上,设计并实现了加热炉先进控制系统,并成功应用。投运结果表明该控制系统可以降低钢坯的氧化烧损、减少燃料消耗。分析该先进控制系统在生产现场运行情况,本文提出了一种基于小波神经网络预测控制的加热炉炉温控制策略。
论文的主要工作如下:
1、分析加热炉炉温对象,研究炉温和煤气流量以及空气流量之间的关系,构建了炉温-流量串级比值控制系统,设计了炉温的广义预测控制器。针对烟气温度设计PID控制回路,构建了先进控制系统硬件平台,设计了先进控制系统操作界面等工作。
2、针对该项目在实施过程中遇到的问题,对先进控制系统进行优化,包括改进换向过程控制、应用加热炉多模型控制使加热炉在各负荷段均有较好的控制品质以及控制器抗饱和处理等。通过整定各控制回路的参数,将先进控制系统进行实际应用,投运结果表明该先进控制系统不仅提高了产品质量,而且降低了钢坯氧化烧损,为企业提高了经济效益。
3、由于加热炉炉温对象具有不确定性和非线性,而神经网络具有较好的非线性系统逼近能力。本文提出采用小波神经网络建立加热炉炉温预测模型,以预测炉温未来输出值,并根据二次型性能指标构建炉温预测控制器,通过滚动优化控制器修正神经网络的参数,得到系统未来的控制量。仿真结果表明,该算法对炉温的变化具有良好的跟踪性,调整周期较短。
- 作 者:
- 闵天
- 学科专业:
- 控制科学与工程
- 授予学位:
- 硕士
- 学位授予单位:
- 中国科学技术大学
- 导师姓名:
- 薛美盛
- 学位年度:
- 2018
- 研究方向:
- 语 种:
- chi
- 基金项目: